Q.P. Code: 1	9EC0401
--------------	---------

Reg	g. No:		
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHN	OLOGY:: PUTTU	R
	(AUTONOMOUS) B.Tech II Year II Semester Regular Examination	oe luly_2021	
	SWITCHING THEORY AND LOGIC DES		
	(Electrical and Electronics Engineering)		
Time	e: 3 hours	Max. Marks:	60
	(Answer all Five Units $5 \times 12 = 60$ Marks))	
	UNIT-I		
1	a Convert the following numbers to Decimal and then to Octal.	L1	6M
	i) (423416) ₁₀ . ii) (10010011) ₂ .		
	b Convert the following to Decimal and then to Hexadecimal.	L1	6M
	i) (1234) ₈ ii) (11001111) ₂		
	OR	CI. 1 T.	(7) (
2	 a Simplify the following Boolean functions to minimum number o i) xyz + x'y + xyz'. ii) xz + x'yz. 	of literals L3	6M
	b Simplify the following Boolean functions to minimum number	r of literals: L3	6M
	F = ABC + ABC' + A'B		UTIT .
	UNIT-II		
3	Simplify the following Boolean expressions using K-map.	L3	12 M
	$F(A, B, C, D) = \Sigma m(5,6,7,12,13) + \Sigma d(4,9,14,15)$	4	
	OR		
4	What are the universal gates? Implement logic gates by using NA	ND and NOR L2	12 M
	gates.		
	UNIT-III		
5	Design 32:1 MUX using two 16:1 MUX'S and one 2:1 MUX.	L5	12 M
(OR	alagia astas II	13 14
6	What is magnitude comparator? Design 2-bit comparator by usin	ng logic gates. L1	12 M
-	UNIT-IV	1.2	10 84
7	What is Register? Explain i) Parallel in Parallel out Register.	L3	12 M
	ii) Series in Parallel out Register. OR		
8	a Explain working of Master Slave Flip flop with neat diagram.	L1	6M
U	b Draw the logic diagram T Flip Flop by using JK Flip Flop		6M
	timing diagram.		
	UNIT-V		
9	Implement PLA circuit for the following functions	L3	12 M
	$F1(A,B,C) = \Sigma m(3,5,6,7), F2(A,B,C) = \Sigma m(0,2,4,7).$		
	OR		
10	Explain the following related to sequential circuits.	L2	12 M
	i) State diagram. ii) State table. iii) State assignment.		
	*** END ***		

R19